
On the Use of the Negation Map in the Pollard Rho
Method

Joppe W. Bos Thorsten Kleinjung Arjen K. Lenstra

Laboratory for Cryptologic Algorithms
EPFL, Station 14, CH-1015 Lausanne, Switzerland

1 / 15

Motivation

Study the negation map in practice when solving the elliptic curve discrete
logarithm problem over prime fields.

Cryptography
The Suite B Cryptography by the NSA allows elliptic curves over
prime fields only.

Solve ECDLPs fast → break ECC-based schemes.

Using the (parallelized) Pollard ρ method

79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges

the recent (2009) 112-bit prime field ECDLP

have been solved.

Textbook optimization: negation map (
√

2 speed-up)
(not used in any of the prime ECDLP records)

2 / 15

Preliminaries

The Elliptic Curve Discrete Logarithm Problem

Let p be an odd prime and E (Fp) an elliptic curve over Fp. Given
g ∈ E (Fp) of prime order q and h ∈ 〈g〉 find m ∈ Z such that mg = h.

Believed to be a hard problem (of order
√
q).

Algorithms to solve ECDLP:
Baby-step Giant-step, Pollard ρ, Pollard Kangaroo

Basic Idea

Pick random objects: ug + vh ∈ 〈g〉 (u, v ∈ Z)
Find duplicate / collision: ug + vh = ūg + v̄h.
If v̄ 6≡ v mod q, m = u−ū

v̄−v mod q solves the discrete logarithm problem.

Expected number of random objects:
√
πq/2

3 / 15

Pollard ρ, [Pollard-78]

Approximate random walk in 〈g〉.
Index function ` : 〈g〉 = G0 ∪ . . . ∪Gt−1 7→ [0, t − 1]

Gi = {x : x ∈ 〈g〉, `(x) = i}, |Gi | ≈
q

t
Precomputed partition constants: f0, . . . , ft−1 ∈ 〈g〉

With fi = uig + vih.

r-adding walk r + s-mixed walk
t = r t = r + s

pi+1 = pi + f`(pi) pi+1 =

{
pi + f`(pi), if 0 ≤ `(pi) < r

2pi , if `(pi) ≥ r

[Teske-01]: r=20 performance close to a random walk.

4 / 15

The Negation Map

[Wiener,Zuccherato-98]

Equivalence relation ∼ on 〈g〉 by p ∼ −p for p ∈ 〈g〉.

Instead of searching 〈g〉 of size q search 〈g〉/∼ of size about q
2 for collisions.

Advantage: Reduces the number of steps by a factor of
√

2.
Efficient to compute: Given (x , y) ∈ 〈g〉 → −(x , y) = (x ,−y)

[Duursma,Gaudry,Morain-99],[Gallant,Lambert,Vanstone-00]

For Koblitz curves the Frobenius automorphism of a degree t binary
extension field leads to a further

√
t-fold speedup.

5 / 15

Negation Map, Side-Effects

Well-known disadvantage: as presented no solution to large ECDLPs

p
(i ,−)−→ −(p + fi)

(i ,−)−→ p.

At any step in the walk the probability to enter a fruitless 2-cycle is 1
2r

[Duursma,Gaudry,Morain-99] (Proposition 31)

2-cycle reduction technique: [Wiener,Zuccherato-98]

f (p) =

{
E (p) if j = `(∼(p + fj)) for 0 ≤ j < r
∼(p + fi) with i ≥ `(p) minimal s.t. `(∼(p + fi)) 6= i mod r .

once every r r steps: E : 〈g〉 → 〈g〉 may restart the walk

Cost increase c =
r∑

i=0

1

r i
with 1 + 1

r ≤ c ≤ 1 + 1
r−1 .

6 / 15

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

p
(i ,−)−→ −(p + fi)

(i ,−)−→ p.

At any step in the walk the probability to enter a fruitless 2-cycle is 1
2r

[Duursma,Gaudry,Morain-99] (Proposition 31)

2-cycle reduction technique: [Wiener,Zuccherato-98]

f (p) =

{
E (p) if j = `(∼(p + fj)) for 0 ≤ j < r
∼(p + fi) with i ≥ `(p) minimal s.t. `(∼(p + fi)) 6= i mod r .

once every r r steps: E : 〈g〉 → 〈g〉 may restart the walk

Cost increase c =
r∑

i=0

1

r i
with 1 + 1

r ≤ c ≤ 1 + 1
r−1 .

6 / 15

Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

p
(i ,−)−→ −(p + fi)

(i ,−)−→ p.

At any step in the walk the probability to enter a fruitless 2-cycle is 1
2r

[Duursma,Gaudry,Morain-99] (Proposition 31)

2-cycle reduction technique: [Wiener,Zuccherato-98]

f (p) =

{
E (p) if j = `(∼(p + fj)) for 0 ≤ j < r
∼(p + fi) with i ≥ `(p) minimal s.t. `(∼(p + fi)) 6= i mod r .

once every r r steps: E : 〈g〉 → 〈g〉 may restart the walk

Cost increase c =
r∑

i=0

1

r i
with 1 + 1

r ≤ c ≤ 1 + 1
r−1 .

6 / 15

Dealing With Fruitless Cycles In General
[Gallant,Lambert,Vanstone-00]

Cycle detection

︸ ︷︷ ︸
α steps

β steps︷ ︸︸ ︷ p

Compare p to all β points. Detect cycles of length ≤ β.

Cycle Escaping

Add

f`(p)+c for a fixed c ∈ Z

a precomputed value f′

f′′`(p) from a distinct list of r precomputed values f′′0, f
′′
1, . . . , f

′′
r−1

to a representative element of this cycle.

7 / 15

2-cycles When Using The 2-cycle Reduction Technique

p −p−fi = q

(i−1, ..) (i−1, ..)

ℓ(∼(p+fi−1))
= i−1

ℓ(∼(q+fi−1))
= i−1.

(i,−)

(i,−)

Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce
2-cycles while using an r-adding walk is

1

2r

(
r−1∑
i=1

1

r i

)2

=
(r r−1 − 1)2

2r2r−1(r − 1)2
=

1

2r3
+ O

(
1

r4

)
.

8 / 15

4-cycle Reduction

p
(i ,+)−→ p + fi

(j ,−)−→ −p− fi − fj
(i ,+)−→ −p− fj

(j ,−)−→ p.

Fruitless 4-cycle starts with probability r−1
4r3 .

Extend the 2-cycle reduction method to reduce 4-cycles:

g(p)=


E (p) if j ∈ {`(q), `(∼(q + f`(q)))} or `(q) = `(∼(q + f`(q)))

where q =∼(p + fj), for 0 ≤ j < r ,
q =∼(p + fi) with i ≥ `(p) minimal s.t.

i mod r 6= `(q) 6= `(∼(q + f`(q))) 6= i mod r .

Disadvantage: more expensive iteration function: ≥ r+4
r

Advantage: positive effect of
√

r−1
r since

image(g) ⊂ 〈g〉 with |image(g)| ≈ r−1
r |〈g〉|.

9 / 15

4-cycle Reduction

p
(i ,+)−→ p + fi

(j ,−)−→ −p− fi − fj
(i ,+)−→ −p− fj

(j ,−)−→ p.

Fruitless 4-cycle starts with probability r−1
4r3 .

Extend the 2-cycle reduction method to reduce 4-cycles:

g(p)=


E (p) if j ∈ {`(q), `(∼(q + f`(q)))} or `(q) = `(∼(q + f`(q)))

where q =∼(p + fj), for 0 ≤ j < r ,
q =∼(p + fi) with i ≥ `(p) minimal s.t.

i mod r 6= `(q) 6= `(∼(q + f`(q))) 6= i mod r .

Disadvantage: more expensive iteration function: ≥ r+4
r

Advantage: positive effect of
√

r−1
r since

image(g) ⊂ 〈g〉 with |image(g)| ≈ r−1
r |〈g〉|.

9 / 15

Example: 4-cycle With 4-cycle reduction

`(∼(p̃ + fk)) ∈ {i, k} `(∼(q̃ + fn) ∈ {j, n}

p̃ =∼(p + fi) ∼(−p− fj+1 + fj) = q̃

p

(j + 1,−)

−p− fj+1

p + fi+1

(j + 1,−)

−p− fi+1 − fj+1

p̄ =∼(p + fi+1 + fj) ∼(−p− fi+1 − fj+1 + fi) = q̄

`(∼(p̄ + fl)) ∈ {j, l} `(∼ (q̄ + fm)) ∈ {i,m}

(i + 1,+) (i + 1,+)

(i, ..)

(k, ..)

(j, ..)

(n, ..)

(j, ..)

(l, ..)

(i, ..)

(m, ..)

r − 1

4r3
reduced to ≥ 4(r − 2)4(r − 1)

r11
10 / 15

Large r -adding Walks

Probability to enter cycle depends on the number of partitions r
Why not simply increase r?

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 2 4 6 8 10 12 14 16 18

st
ep

s
/

se
co

n
d

log2 (r)

Practical performance penalty (cache-misses)
Fruitless cycles still occur

11 / 15

Large r -adding Walks

Probability to enter cycle depends on the number of partitions r
Why not simply increase r?

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 2 4 6 8 10 12 14 16 18

st
ep

s
/

se
co

n
d

log2 (r)

Practical performance penalty (cache-misses)
Fruitless cycles still occur

11 / 15

Recurring Cycles

Using

r -adding walk with a medium sized r and
{ 2, 4 }-reduction technique and
cycle escaping techniques

it is still very unlikely to solve any large ECDLP.

−p− fi − fj

p

−p− fj

(i,+)

(j,−)

p+ fi

(j,−)

(i,+)

p+ fk

(k,+) −p− fk − fj

(j,−)

(k,+)

−p− fi − fk

(i,−)

(k,−)

12 / 15

Recurring Cycles

Using

r -adding walk with a medium sized r and
{ 2, 4 }-reduction technique and
cycle escaping techniques

it is still very unlikely to solve any large ECDLP.
−p− fi − fj

p

−p− fj

(i,+)

(j,−)

p+ fi

(j,−)

(i,+)

p+ fk

(k,+) −p− fk − fj

(j,−)

(k,+)

−p− fi − fk

(i,−)

(k,−)

12 / 15

Dealing With Recurring Cycles

Reduce the number of fruitless (recurring) cycles by using a mixed-walk

a cycle with at least one doubling is most likely not fruitless

doublings are more expensive than additions

Use doublings to escape cycles, eliminates recurring cycles.

f̄ (p) =

{
∼(p + f`(p)) if `(p) 6= `(∼(p + f`(p))),
∼(2p) otherwise,

ḡ(p) =

{
q =∼(p + f`(p)) if `(q) 6= `(p) 6= `(∼(q + f`(q))) 6= `(q),
∼(2p) otherwise.

13 / 15

Experiments @ AMD Phenom 9500

r = 16 r = 32 r = 64 r = 128 r = 256 r = 512

Without negation map
7.29: 0.98 7.28: 0.99 7.27: 1.00 7.19: 0.99 6.97: 0.96 6.78: 0.94

With negation map
just g 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.04: 0.01 3.59: 0.70
just ē 3.34: 0.64 4.89: 0.95 5.85: 1.14 6.10: 1.19 6.28: 1.23 6.18: 1.21

f , e 0.00: 0.00 0.00: 0.00 1.52: 0.30 5.93: 1.16 6.47: 1.27 6.36: 1.25

f , ē 3.71: 0.72 6.36: 1.24 6.50: 1.27 6.57: 1.29 6.47: 1.27 6.30: 1.25

g , e 0.00: 0.00 0.01: 0.00 4.89: 0.96 6.22: 1.22 6.23: 1.22 6.05: 1.19

g , ē 0.76: 0.15 5.91: 1.17 6.02: 1.18 6.25: 1.23 6.13: 1.20 6.00: 1.18

14 / 15

Conclusions

Using the negation map optimization technique for solving prime ECDLPs
is useful in practice when

{ 2, 4 }-cycle reduction techniques are used

recurring cycles are avoided; e.g. escaping by doubling

medium sized r -adding walk (r = 128) are used

Using all this we managed to get a speedup of at most:

1.29 <
√

2 (≈ 1.41)

More details and experiments in the article.

Future Work

Better cycle reduction or escaping techniques?
Faster implementations?
Can we do better than 1.29 speedup?

15 / 15

