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Study the negation map in practice when solving the elliptic curve discrete
logarithm problem over prime fields.

Cryptography
@ The Suite B Cryptography by the NSA allows elliptic curves over
prime fields only.

@ Solve ECDLPs fast — break ECC-based schemes.

Using the (parallelized) Pollard p method
@ 79-, 89-, 97- and 109-bit (2000) prime field Certicom challenges
@ the recent (2009) 112-bit prime field ECDLP

have been solved.

Textbook optimization: negation map (/2 speed-up)
(not used in any of the prime ECDLP records)



Preliminaries

The Elliptic Curve Discrete Logarithm Problem

Let p be an odd prime and E(F;) an elliptic curve over F,. Given
g € E(Fp) of prime order g and b € (g) find m € Z such that mg = b.

Believed to be a hard problem (of order ,/q).
Algorithms to solve ECDLP:
Baby-step Giant-step, Pollard p, Pollard Kangaroo

Basic Idea

Pick random objects: ug + vh € (g) (u,v € Z)
Find duplicate / collision: ug + vh = g + vbh.
If v v mod g, m= =  mod q solves the discrete logarithm problem.

Expected number of random objects: \/mq/2




Pollard p, [Pollard-78]

Approximate random walk in (g).
Index function ¢ : (g) = BoU...UG;_1 — [0,t — 1]
, q
o= {rrelon =1 [6]~]
Precomputed partition constants: fo,...,fi—1 € (g)
With §; = ujg + vib.

r-adding walk | r + s-mixed walk
t=r t=r+s

I o Pt Ty, O L(pi) <r
Pit1 =pi + f@(p,-) Piv1 = { 213;, if E(P,) >

[Teske-01]: r=20 performance close to a random walk.



The Negation Map

[Wiener,Zuccherato-98|

Equivalence relation ~ on (g) by p ~ —p for p € (g).

Instead of searching (g) of size g search (g)/~ of size about § for collisions.

Advantage: Reduces the number of steps by a factor of v/2.
Efficient to compute: Given (x,y) € (g) — —(x,y) = (x, —y)

[Duursma,Gaudry,Morain-99],[Gallant,Lambert,Vanstone-00]

For Koblitz curves the Frobenius automorphism of a degree t binary
extension field leads to a further \/t-fold speedup.




Negation Map, Side-Effects

Well-known disadvantage: as presented no solution to large ECDLPs



Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles
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At any step in the walk the probability to enter a fruitless 2-cycle is %
[Duursma,Gaudry,Morain-99] (Proposition 31)



Negation Map, Side-Effects

Well-known disadvantage: fruitless cycles

p("—_g—(p+f;)("—_>)p-

At any step in the walk the probability to enter a fruitless 2-cycle is %
[Duursma,Gaudry,Morain-99] (Proposition 31)

2-cycle reduction technique: [Wiener,Zuccherato-98]

f(p) = { E(p) if j=(~(p+7;)) for0<j<r
~(p +f;) with i > £(p) minimal s.t. £(~(p +f;)) # i mod r.

once every r" steps: E : (g) — (g) may restart the walk
r

. 1 .
Costlncreasec:g —with14+1<c<1+ A5
r
i=0
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Dealing With Fruitless Cycles In General
[Gallant,Lambert,Vanstone-00]

Cycle detection
[ steps
—_——p
T SRR
| S —

o steps

Compare p to all S points. Detect cycles of length < j3.

Cycle Escaping

Add
® fy(p)4c for afixed c € Z
@ a precomputed value §’

® fy from a distinct list of r precomputed values fg, 7, ..., §/_;

to a representative element of this cycle.




2-cycles When Using The 2-cycle Reduction Technique

U~(p+fir))  U~(a+fia))
=i—1 =1i—1

Lemma

The probability to enter a fruitless 2-cycle when looking ahead to reduce
2-cycles while using an r-adding walk is

2
1 (S (rr=1—1)2 1 1
Z(ZF) — st = 5+ 0 (%)

1=




4-cycle Reduction

i>+ .7_ ’a+ .7_
p U a4 99 —p—fi—1¥ ar —p—j 3 .

. . .y r*l
Fruitless 4-cycle starts with probability 7.



4-cycle Reduction

(i>+) (jv_) (i1+) (.7_)
p— p+fi — —p—fi—-f — —-p—-fi — »p
Fruitless 4-cycle starts with probability ’4%31.
Extend the 2-cycle reduction method to reduce 4-cycles:

E(p) if j € {€(q), £(~(a + fe(q)))} or £(a) = £(~(q + Fuq)))
where q =~(p +f;), for 0 <j <r,

q =~(p + ;) with / > ¢(p) minimal s.t.
i mod r # £(q) # £(~(q + fe(q))) # i mod r.

g(p)=

Disadvantage: more expensive iteration function: > #
r—1

Advantage: positive effect of |/ = since

image(g) C (g) with |image(g)| ~ = ((g)|-



Example: 4-cycle With 4-cycle reduction

U{p+ i) € (i, k) © O ~{d+Fa) € Um}
(k)" S (n, )
p=~(p+Fi) CA) CA) ~=p—Ffi+1+1)=a
() gy )
PO—0O —p—Fjn
(i+1,4) (i+1,4)
P+ fita O—> ) —h— fir:1 — fj41
(j,“)é E(Z’")
p=~(p+fir1 +75) Cv) Cv) ~=p = fir1 —Fje1 + i) =1
(1, )v ;(m, )
U~p+1)) i} O O U~ (q+Fm)) € {i,m}
r4:31 reduced to > A = 2r)141(r —1)
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Large r-adding Walks

@ Probability to enter cycle depends on the number of partitions r
@ Why not simply increase r?
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Large r-adding Walks

@ Probability to enter cycle depends on the number of partitions r
@ Why not simply increase r?
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3e+06 B
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2e+06 B
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1.5e+06 [ q

le+06 B

500000 - q
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log, (1)

@ Practical performance penalty (cache-misses)

@ Fruitless cycles still occur
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Recurring Cycles

Using
o r-adding walk with a medium sized r and
o { 2, 4 }-reduction technique and
@ cycle escaping techniques

it is still very unlikely to solve any large ECDLP.
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Recurring Cycles

Using
o r-adding walk with a medium sized r and
o { 2, 4 }-reduction technique and
@ cycle escaping techniques
it is still very unlikely to solve any large ECDLP.
—p—Fi— ¥

(j7 ;)f‘o\(% +)
ptfi ~. h- f
(iv +) (.] ’ 7)

*P*fi*fkq (k,+) 40 —p—Fe—F;

T b
(’L’ ) P +fk (]’7)
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Dealing With Recurring Cycles

Reduce the number of fruitless (recurring) cycles by using a mixed-walk
@ a cycle with at least one doubling is most likely not fruitless

@ doublings are more expensive than additions

Use doublings to escape cycles, eliminates recurring cycles.

Z ~Mp A Fepy) T LR) 7 L~ + For)))s
flp) = {~(2p) ) otherwise, v

S(n) — { q =~(p +fop) i £(q) 7 £(p) # €(~(a + Fuq))) # €a),

~(2p) otherwise.
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Experiments @ AMD Phenom 9500

| r=16 r=32 r=64 r=128 r=256 r=512
Without negation map
\7.29: 0.987.28: 0.99\7.27: 1.00| 7.19: 0.99/6.97: 0.96|6.78: 0.94
With negation map
just g|0.00: 0.00|0.00: 0.00| 0.00: 0.00| 0.00: 0.00|0.04: 0.01]3.59: 0.70
just € |3.34: 0.64(4.89: 0.95| 5.85: 1.14| 6.10: 1.19]6.28: 1.23|6.18: 1.21

f,e ]0.00: 0.00(0.00: 0.00| 1.52: 0.30| 5.93: 1.16|6.47: 1.27|6.36: 1.25

f,e |3.71: 0.72|6.36: 1.24| 6.50: 1.27|6.57: 1.29/6.47: 1.27|6.30: 1.25
g, e |0.00: 0.00|0.01: 0.00| 4.89: 0.96| 6.22: 1.22|6.23: 1.22]6.05: 1.19
g, € |0.76: 0.15|5.91: 1.17| 6.02: 1.18| 6.25: 1.23|6.13: 1.20|6.00: 1.18
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Conclusions

Using the negation map optimization technique for solving prime ECDLPs
is useful in practice when

e { 2, 4 }-cycle reduction techniques are used
@ recurring cycles are avoided; e.g. escaping by doubling
e medium sized r-adding walk (r = 128) are used

Using all this we managed to get a speedup of at most:
1.29 < /2 (= 1.41)

More details and experiments in the article.

Better cycle reduction or escaping techniques?
Faster implementations?
Can we do better than 1.29 speedup?
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